Rehabilitation of the Upper Limb Amputee: Considerations and Challenges
BAPO, 17 March 2018

Melissa Jacobs, Occupational Therapist
Queen Mary’s Hospital, Roehampton
Contents

- Background
- Digit amputation/ partial hands
- Bi-laterals
- Prosthetic selection
- Prosthetic Training
- Outcome measures
- Prosthetic Rejection
- Use and care of the remaining limb
- Non- prosthetic solutions
- Case Studies
Introduction

- The upper limb is incredibly complex
- Upper limb amputee rehabilitation is complex (physically and psychologically)
- Very different client group to lower limb
- Prosthesis is not always the answer
- Need for flexible and creative thinking
- OT may be able to offer alternative solutions
- Team members may approach problems differently
The Upper Limb Team

- Doctor
- Prosthetist
- Occupational Therapist
- Psychologist
- Physiotherapist
- Clinical Nurse Specialist
- Social Worker
- Technicians
Digit Amputation

- Finger / finger tip amputation can have significant psychological impact
- Some patients report functional difficulties which are disproportionate to level of injury
- Involve psychology/ counselling services prior to prosthetic prescription, where possible
- Trial finger from PVC glove
- High definition Silicone- specific process/ criteria – HDS not always the answer.
- OT can assess function and suggest strategies and/or adaptive aids as required
- Offer peer support
Partial hands

- Complex from prosthetic perspective – limited options
- Patient may be more functional without prosthesis
- RPL semi-custom gloves can work well for cosmesis
- Alternative options (for function) include:
 - Bespoke devices – not CE marked!
 - Opposition plates
 - Cutlery cuff straps
 - Active Hands
 - Peer Support
Partial Hands
Bi-laterals – Considerations

- Consider shortening one of the forearms to enable patient to bring terminal device to their mouth.
- Prostheses are only part of the solution.
- Additional aids/ adaptations to maintain independence.
- Consider Environmental controls
- Peer support ++
- Prioritised Goal setting is crucial
- Each activity may require combination of options
Bi-laterals Toileting Options

- Closomat/ bidet toilet
- Telescopic dressing stick
- Prostheses
- Bottom wiper device
- Paper on seat or heel
- Wet wipes
- Wall hook/ dressing tree
- Carer assistance
Prosthetic Selection Process

- **Goal setting** – to direct prescription. What for and why? Be specific
- **Protocols/ criteria** for different types of prosthesis, e.g. single amputees must have tried body powered or cosmetic before myo- electric considered and demonstrate commitment
- **Physiological and psychological factors**
- Less clear cut with bi-lateral and multiple amputees – case by case approach
Prosthetic Selection – the OT role

- **Goal Setting** - Self care, productivity and leisure
- **Activity analysis** - simulate specific parts of a task.
- **Liaison** with other centres
- It’s **not all about the prosthesis**. Alternative options include; compensatory techniques, adaptive equipment, external organisations.
- **Knowledge** of what other agencies exist - avoid reinventing the wheel, e.g. OHMI, LEPMIS, Alice Reigns
Specific age ranges at which we will consider different types of prosthesis.

Start with cosmetic (from 6 months)

If family demonstrate commitment, consider body powered from 2 years and Myo, from 4 years.

Family and child to identify appropriate goals before new or alternative prescription is considered.

Activity Limbs - either bespoke device or using sports funding.

Review annually
Myo-electric protocol

- Joint MDT decision
- Established/ regular limb wearer (minimum six months) except bi-lateral upper limb amputees
- Tolerate the weight of a myo-electric prosthesis
- Sufficient muscle signals
- Suitable shape and length of stump
- Current prescription does not meet their clinical need or functionality level
- And/ or Psychosocial need
- Goal setting with OT to establish specific goals that cannot be achieved using an alternative prosthesis
- Cognitive capacity
- Commit to a minimum of three training sessions prior to prescription of a myo-electric prosthesis with three further training sessions at delivery and post delivery.
- The patient will then be reviewed after three months, six months and one year.
- The Occupational Therapist will guide the patient to transfer the use of the prosthesis to home school and work.
- The patient must agree to abide by manufacturers instructions e.g. avoid contact with water, grease, solvents etc.
- Patients must agree to return the prosthesis if they are not finding it beneficial.
- N.B. with regards to children the OT would need to be in contact with the child’s school/ nursery and ideally conduct a school visit.
Training – Adults

- Pre-prosthetic training using PAULA (Myo-electric only)

Post Delivery:
- Donning/ doffing practice and learning mechanisms
- Repetitive drills
- One handed tasks
- Two handed tasks based on identified goals – start simple and increase complexity
- Short/ regular training sessions to start, gradually increase wear time
- ?? Bi-annual Reviews!
Training - Children

- Pre-prosthetic training using PAULA (Myo-electric only)

Post Delivery:

- Teach donning/ doffing to parents and child
- Teach mechanisms to parents and child
- Repetitive drills
- Games – one handed
- Two handed (age appropriate) tasks based on identified goals e.g. rice treats
- Similar to adults – make it fun!!
Outcome measures

- Outcome measure development has not kept pace with prosthetic advances (Biddis and Chau, 2007)
- Outcome Measures – we currently use:
 - Canadian Occupational; Performance Measure (COPM)
 - Tapes – Trinity Amputation and Prosthesis Experience Scales - Revised
 - Assessment of Capacity for Myoelectric Control
 - Box and Blocks Assessment
 - History of Anxiety and Depression (HAD)
Myo-electric rejection

- Inconsistencies in the available data regarding myoelectric rejection rates which ranged between 8 and 50%. (Edeer and Martin, 2011)
- Generally agreed that rejection rates are high, particularly among children
- Developed prescription protocol to help reduce this
- The current protocol at QMH needs work with regards to bi-lateral/multiple limb amputees
- Where possible, offer trial of myo-electric hand prior to prescription, in order to reduce rejection rates
Use and care of remaining limb

- Independence with activities of daily living: one-handed techniques
- Education on preventing overuse of remaining limb – choice of clothing, ergonomic equipment, alternative techniques
- Advice on joint protection and energy conservation
- Postural education e.g. ergonomic workstation
- Liaison with school/work as appropriate
- Prescription of/advice on appropriate adaptive aids and assistive devices
Compensation strategies

- Combination of techniques and assistive devices
- Strategies used will depend on the patient, level of amputation, general mobility, co-existing difficulties
- Examples: writing, tying shoelaces, opening jars, peeling vegetables
- Simplest solutions are often best
Tools for home and school

- Adapted scissors
- Paper holder
- Adapted cutlery e.g. knork
- Right angled knife
- Dycem – non-slip material
Case Study 1

- 12 year old girl
- Congenital below elbow
- Moderate learning disability, attends special needs school
- Requested myo-electric prosthesis
- Assessed to be unsuitable for myo-electric at another centre, 2 years previously
Case Study 1 - Approach

- MDT assessment – Doctor, OT, prosthettist and psychologist
- Consult myo-electric protocol
- Assessment using PAULA
- Goal setting
- MDT discussion
- Patient met criteria, team agreed to proceed to myo-electric trial
Case Study 1 - Training

Pre Prosthetic

- PAULA – Car game +++

Post delivery

- Picking up blocks
- Bee game
- Egg and spoon race
- Fishing game
- Rice crispy cakes
- Patient became engaged in the activities and soon forgot about weight
Case Study 2

- Female, 38 years. Below Elbow amputation following RTA and Brachial Plexus injury
- Reconstruction to the elbow resulting in active but limited elbow flexion
- Tried split hook but patient unable to extend elbow without crossing midline
Case Study 2

- Voluntary closing pre-hensor with cutaneous suspension
- Result = Improved function, increased scores on outcome measures, increased endurance
- Improved posture, reduced abnormal movement
- Reports using in daily activities such as food preparation
Case Study 3

- 13 year old
- Ischaemic amputation, LT wrist disarticulation
- 4 limb motor disorder (CP) right side weaker than left
- Left side dominant – very limited function in right hand
- Global developmental delay
- Prescribed split hook in 2014, Initially managed well but lost motivation
- Elected to revisit prosthetics in 2017
- Goals: to hold microphone and manipulate building blocks.
Case Study 3

- Prescribed voluntary closing TRS hand

Training Strategy

- Physical and verbal prompting
- Repetition ++
- Consistency with phrases
- Hands on facilitation
- Use of games and play activities for motivation
- Allowing sufficient time for sessions
- Allowing for multiple training sessions
- Knowing when to stop – patient choice
Case Study 3 - Outcome

- Team underestimated the complexity of the process for this patient
- This device was deemed unsuitable for this patient due to involuntary movements associated with cerebral palsy
- Offered coloured hook but patient declined
- Next step: Trial with voluntary opening hand
Case Study 4

- Female 48 years. Amputation of 4 limbs due to sepsis
- Bi-lateral below elbow amputations
- Initially opposed to body powered prosthesis due to appearance
- Requested myo-electric, with electric wrist rotator
- Commenced myo-trail using PAULA - no improvement during training sessions
- Struggled to tolerate weight
- Introduced to another patient with similar levels of amputation
Case Study 4 - Outcome

- Patient agreed to try carbon fibre gripper
- Terminated myo-electric trail and commenced training with gripper
- Still very early days but patient currently using well.
- Able to take prosthesis home when discharged from the ward.
- Able to play games with daughter – return to previous role.
Final thoughts

- Not all upper limb amputees will opt to wear a prosthesis
- What works for one may not work for another – team must remain flexible and communicate effectively.
- Unique, client centred approach
- Consider the appropriate time for prosthesis – may not be immediately post amputation – grief process
- Multi Disciplinary Team approach
- Trial and error – (we don’t always get it right first time/ have all the answers)
- Prosthetic arm is not a replacement limb but a tool
- Sharing of ideas between centres is invaluable
Useful Resources

- OHMI – One handed musical instrument society
- LEPMIS – adaptive gaming
- Special Effect – adaptive gaming charity
- REACH – association for arm or hand deficiency
- REMAP – voluntary engineers specialising in bespoke devices.

OHMI
LePmis
Game Access
References

Thank you for listening